• Med-Tech

Verchipt

Mikrochips im Gehirn, um die Fähigkeiten des Menschen zu steigern – eine altbekannte Fantasie. Doch ist das wirklich denkbar? Und falls ja: Wie weit sind wir am Weg dorthin bereits gekommen?

„Neural lace“ heißen die Verbindungen, die in der fiktiven Gesellschaft „The Culture“ des bereits verstorbenen schottischen Autors Iain M. Banks vorkommen. Es sind Schnittstellen zwischen Gehirn und Computer, die nicht nur die Kommunikation zwischen Mensch, Maschine und Datenbanken perfektionieren, sondern auch das Lesen von Gedanken ermöglichen – was aber strikt Tabu ist. Zudem werden die „Culture-Bewohner“ unsterblich, da ihre Information auf den Laces gespeichert wird und so auf einen neuen Bewohner übertragen werden kann.

Banks entwarf die Gesellschaft in einer zwölfteiligen Science-Fiction-Buchreihe, in der eben auch die neural laces eine tragende Rolle spielen. Seit jeher treibt die Implementierung von Chips in den menschlichen Körper die Fantasie der Autoren und Filmemacher an. Ein Blick in die Realität lässt einen alten Bekannten auf die Bildfläche treten, wenn es um Zukunftsszenarien geht: Elon Musk.

Musk gründete 2016 Neuralink. Das Unternehmen soll – ähnlich wie in Banks’ Bücherserie – in einem ersten Schritt mittels Brain-Computer-Interface Gehirnschäden beheben, bevor es sich in Richtung „Human Enhancement“, also die Verbesserung von menschlichen Fähigkeiten entwickelt. Kürzlich sammelte das Start-up 27 Millionen US-$ ein, um diesen Plan in die Tat umzusetzen.

Doch auch abseits des Tesla-Gründers forscht man eifrig an Mikrochips. Während der Einsatz zur Steigerung kognitiver Fähigkeiten beziehungsweise der Kommunikation zwischen Mensch und Maschine jedoch noch im Anfangsstadium steht, ist die Ermöglichung von Bewegungen – etwa bei Querschnittslähmungen – deutlich weiter fortgeschritten.

An der École polytechnique fédérale de Lausanne (EPFL) forscht Grégoire Courtine an der Befähigung von Menschen, die Kontrolle über bestimmte Körperregionen wiederzugewinnen. Erste erfolgreiche Tests an Ratten und auch Primaten stimmen den Universitätsprofessor zuversichtlich, dass in den nächsten zehn Jahren Lähmungen mithilfe der Chips vollständig geheilt werden können. Doch wie funktioniert das System?

Forbes: Was ist der Status Quo der Forschung an Mikrochips, die Menschen die Beweglichkeit bestimmter Körperteile zurückgeben sollen?
Grégoire Courtine: Unser Ziel ist es, Chips in das Gehirn von Säugetieren einzusetzen, die wiederum Signale an das Rückenmark senden. So wollen wir Bewegung in bestimmten Körperbereichen herbeiführen. Dabei sind mehrere Schritte zu gehen. Der erste ist die Stimulation des Rückenmarks, das ist ein laufender Prozess. Dabei werden Chips in das Rückenmark eingesetzt. Unsere Stimulatoren können bestimmte Körperregionen stimulieren.

Ein zweiter Schritt ist jedoch das Implementieren von Chips in das Gehirn, die mit dem Rückenmark kommunizieren. Dies wird vor allem im WYSS Center in Genf untersucht, dem einer der Pioniere des Felds, John Donoghue, als Direktor vorsteht. Hier arbeiten wir an vollständig implementierbaren Mikrochips. Das geht in die Richtung, in die auch das US-Unternehmen Neuralink von Elon Musk forscht. Die Technologie wird derzeit an Primaten getestet – und hoffentlich bald auch an Menschen.

Wie genau funktionieren die Chips?
Zuerst nimmt man die elektrischen Signale vom Gehirn auf, das passiert innerhalb des zerebralen Kortex. Sobald die Signale aufgenommen wurden, ist es ein ziemlich komplexes System, wie diese verarbeitet und dann „ausgestrahlt“ werden. Dann muss das Signal verstanden werden – sprich, wo möchte der Mensch sich bewegen, etwa im linken oder rechten Bein. Es ist zudem kein Bypass-System, dass also lediglich eine Verbindung zwischen dem Gehirn und dem Rückenmark besteht. Vielmehr sollte eine Kooperation zwischen der natürlichen Bewegung und diesem neuronalen Bypass entstehen. Verletzungen des Rückenmarks passieren immer so, dass auch Verbindungen heil bleiben. Wir wollen also mit diesem neuronalen Bypass natürliche Bewegungen ermöglichen, die der Mensch machen will. Deswegen funktioniert es so gut, weil es natürlich ist und die Funktionsweise des zentralen Nervensystems respektiert.

Gibt es einen Zeitrahmen, innerhalb dessen Sie die ersten Versuche mit Menschen erwarten?
Es gibt eine hohe Wahrscheinlichkeit, dass das schon sehr bald an Menschen getestet wird – jedoch vorerst als Experiment. Es ist ein großer Weg zwischen den ersten klinischen Tests und einem echten medizinischen Produkt. Wir sind ziemlich nahe an den ersten Tests, jedoch recht weit weg davon, dass die Chips zu einem Medizinprodukt werden. Ich hoffe, dass die Chips als experimentelles Gerät in den nächsten fünf Jahren eingesetzt wird. Es ist aber natürlich immer schwierig, sich an Zeitleisten zu binden.

Es gab also noch keinen Fall, wo ein solcher Chip einem Menschen eingesetzt wurde?
Noch nicht, nein. Das ist noch in der Pipeline. Nur der Teil, wo das Rückenmark stimuliert wurde.

Könnten implementierte Mikrochips neben Bewegungen auch kognitive Fähigkeiten – etwa das Gedächtnis – verbessern?
Hier findet Forschung statt, ja. Dieses Feld ist aber aktuell noch explorativ. Diese Geräte werden vor allem für Interfaces zwischen Gehirn und Computer entwickelt, oder zwischen Gehirn und einem Roboterarm. Hier gibt es alle möglichen Anwendungsmöglichkeiten.

Welche Risiken müssen in den klinischen Versuchen noch ausgeschlossen werden?
Eine der größten Herausforderungen ist Überhitzung und Batterieleistung. Das ist eine der großen Einschränkungen. Die Chips haben hohe Energieanforderungen, benötigen also auch große Batterien. Dadurch entsteht Hitze, was das Gehirn nicht besonders gut verträgt.

Was wäre der Heilige Gral für Sie in Ihrer Forschung? Welches Problem möchten Sie knacken?
Ich möchte diese Device für Rehabilitationszwecke nutzen. Das angesprochene System, das einen Loop zwischen dem Gehirn und dem Rückenmark bildet. So möchte ich die Erholung verbessern, sodass Menschen eine vollständige Genesung erzielen können. Die Prothese sollte ein bis zwei Jahre genutzt werden und nicht im täglichen Leben verwendet werden müssen. Ich denke, es ist innerhalb der nächsten zehn Jahre möglich, das zu erreichen.

Das heißt, Menschen, die Bewegungsfähigkeit in einem bestimmten Bereich verloren haben, könnten durch die Chips vollständig genesen?
Ganz genau. Daran arbeiten wir, das ist unser Ziel.

,
Chefredakteur

Up to Date

Mit dem FORBES Newsletter bekommen Sie regelmäßig die spannendsten Artikel sowie Eventankündigungen direkt in Ihr E-Mail-Postfach geliefert.

Surprise me

Ex Machina

Robo Sapiens

Ein Roboter, der fühlt, denkt und interagiert. Das ist das Ziel von Hanson Robotics. In Hongkong forscht man eifrig daran, künstliche Intelligenz (KI) zu erschaffen.

Read more

Moonwalk

Weltraumtouristen gibt es bereits, bis zum Mond hat es aber noch kein Urlauber geschafft. Beim Wettlauf ins All 2.0 ringen private Raumfahrtunternehmen um die Vormachtstellung, sie loten aus, ob das Geschäft rentabel ist. Die Kosten aber sind astronomisch.

Read more

Eisenhart

Technologische Entwicklungen in Richtung „Cyborgs“ schreiten voran. Werden wir in Zukunft alle mechanische Bauteile in unserem Körper tragen?

Read more

Blockchain: Die Zukunft?

Das System könnte die Finanzbranche revolutionieren und eine Chance sein, Prozesse neu aufzusetzen und zu optimieren.

Read more

Still Awake

Wer entscheidet über Leben und Tod? Eine der früher zentralen Fragen der Religion verlagert sich zunehmend in den Bereich der Wissenschaft. Dort gibt es einen –vermeintlichen – Heilsbringer: die Kryonik.

Read more

Klug gemacht

Mittels CRISPR-Cas9-Methode können Forscher im Auftrag von Firmen Gene editieren. Schon bald auch ganze Menschen?

Read more

Auf in neue Welten

Die Neugierde nach neuen Lebensformen und Welten steckt im Menschen. Besonders Virtual Reality (VR) befeuert diesen Wunsch. Derartige Visionen entspringen aber auch dem Science-Fiction-Kosmos.

Read more

Zeit ist nicht Geld

Alternative Wirtschaftskonzepte mit Zeit als Währung gewinnen wieder an Auftrieb. Trotzdem scheint das Ende des klassischen Währungssystems noch Science-Fiction.

Read more